
VHDL Test Bench Users Guide
by

Ken Campbell

Version: 2.0 Beta

May, 2011

GNU VHDL Test Bench May, 2011

Copyright (c) Ken Campbell.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
 Texts. A copy of the license is included in the section entitled "GNU
 Free Documentation License".

VHDL Test Bench Users Guide Version: 2.0 Beta ii

GNU VHDL Test Bench May, 2011

Revision History:
Version Revised By Description Date

1.0 Ken Campbell Initial release March 20, 2007
1.1 Ken Campbell Update for changes to the tb package September 1, 2007
1.2 Ken Campbell Update for faster script access February 24, 2008

2.0 Ken Campbell Update for variable parameters in a stimulus command
Update for missing file name variable content April, 2011

VHDL Test Bench Users Guide Version: 2.0 Beta iii

GNU VHDL Test Bench May, 2011

Table of Contents
1.INTRODUCTION ...1

1.1HISTORY..1
1.2OVERVIEW...1
1.3SCOPE...2
1.4INTERESTED PARTIES..2
1.5 WHY?..2
1.6OTHER SOURCES OF INFORMATION...2
1.7DOCUMENT ACRONYMS...3

2.TEST ENVIRONMENT USAGE FLOW..4

2.1THE DUT...5
2.2CHOOSE THE METHODOLOGY...5
2.3GENERATING THE TEST BENCH...5
2.4CREATING THE INITIAL INSTRUCTIONS..5
2.5WRITING TEST CASES (STM FILES)..6
2.6THE REGRESSION SET...7

3.THE VHDL TEST BENCH...8

3.1RECOMMENDED DIRECTORY AND FILE STRUCTURE..8
3.2DEFAULT TEST BENCH STRUCTURE...8
3.3IMPLEMENTATION VARIATIONS..9

3.3.1INTERNAL TEST BENCH VARIANT ...9
3.3.2MULTI SCRIPT IMPLEMENTATIONS...10

3.4SCRIPT PARSING CONVENTIONS...11
3.4.1CASE..11
3.4.2WHITE SPACE..11
3.4.3COMMENTS...11
3.4.4VARIABLES..11
3.4.5SPECIAL VARIABLES...11
3.4.6CONDITION OPERATOR CONSTANTS...12
3.4.7NUMBER NOTATION:..12
3.4.8DYNAMIC TEXT STRINGS..12

3.5SEARCH ORDER..14

4.TEST ENVIRONMENT INSTRUCTIONS...15

4.1DEFAULT INSTRUCTIONS..15
4.2USER DEFINED INSTRUCTIONS...17

4.2.1COMMANDS WITH VARIABLE NUMBER OF PARAMETERS...18
4.2.2PROCEDURES...19
4.2.3CONCURRENCY..19

5.TEST BENCH WORKING DETAILS...20

5.1VHDL VARIABLES..20
5.2VHDL PROCEDURES...21

6.TEST BENCH GENERATOR TOOL...23

6.1TTB GEN PLUS 2 USAGE...23

7.THE TEST BENCH AND BFMS...24

7.1THE STIMULUS ACCESS PORT...24
7.2CONNECTING BFMS INTO THE TEST BENCH..26

8.FUNCTIONS PROVIDED BY THE TEST BENCH PACKAGE...27

VHDL Test Bench Users Guide Version: 2.0 Beta iv

GNU VHDL Test Bench May, 2011

8.1C2STD_VEC..27
8.2DEFINE_INSTRUCTION..27
8.3INDEX_VARIABLE...27
8.4UPDATE_VARIABLE..28
8.5TOKENIZE_LINE..28
8.6PRINT...28
8.7TXT_PRINT...29
8.8TXT_PRINT_WVAR...29

9.VERSION 1.2 TEST BENCH PACKAGE..30

9.1UPGRADING TB_BHV FROM 1.1 TO 1.2...30

10.VERSION 1.3 TEST BENCH PACKAGE..31

11.BETA 2.0 TEST BENCH PACKAGE..31

APPENDIX A: EXAMPLE TB..32

APPENDIX B: UPDATES...33

GNU FREE DOCUMENTATION LICENSE..34

VHDL Test Bench Users Guide Version: 2.0 Beta v

GNU VHDL Test Bench May, 2011

Table of Figures
Figure 1 - Default Test Bench Structure...9
Figure 2: Script Driven Processor Implementation...10
Figure 3: Multi Script Variant Implementation..10

Index of Tables

VHDL Test Bench Users Guide Version: 2.0 Beta vi

GNU VHDL Test Bench May, 2011

1. Introduction

1.1 History
The VHDL test bench system contained in its release and described in this document, began in 1996 when
computers were not as they are today. It was created to provide a lean but flexible test bench system. The
environment was implemented based on a presentation at a 1996 VHDL conference, by a Semi-conductor
manufacturer representative. The first implementation was created by an employee of a telco equipment
manufacturer, after attending the conference. This enabled better testing of ASIC and FPGA designs. The
computer initially running the environment was a Sun Systems Sparc 5. The environment was created to be
sparse in order to save as much of the memory for the design as possible. It was about this time that I, “the
author” of this document and GNU VHDL test bench, started using this environment and began to specialize in
the HDL verification field. An application was created to make the initial test bench VHDL structure files, a
push button operation.

As computing power increased the facilities of the VHDL test bench got upgraded and enhanced. Variable
manipulation and the “include” function are a couple of the enhancements made. The user base got to an
estimated 40+ users and was introduced to Europe offices of the telco company. One European user gave the
environment a very nice review, sighting ease of use, size and documentation qualities. After six years of using
and upgrading the environment, the author changed employers.

At the new location, the year being 2003, the lack of a test environment incited the author to write a new VHDL
test bench package for use at the new employer. While doing so, many complaints from the past, about various
lacking functionality were addressed. Many messages were added to provide better debugging information to
the test bench user. The development of the new package was done on a Windows platform using Modelsim's
PE VHDL simulator. This effort took approximately one week of full time coding. With the computing power
increase, the test bench system was created to have as few limits as possible. The addition of more passed
parameters and the output text string facility enabled the 14 person design team to implement some very
complicated mixed HDL designs. The environment proved once again that the whole team can be writing test
cases, at the same time, using a single common environment.

In 2007,with the environment having been used to develop some 50+ design blocks, 6 FPGA designs and one
ASIC, it is believed that all the bugs have been discovered. All dependencies on tool specific packages have
been removed. The VHDL test bench package is now considered stable and portable. At the request of the
author, the employer agrees to allow the author to release the VHDL test bench package as a GNU free software
offering.

1.2 Overview
The VHDL test bench is a collection of VHDL procedures and functions which allow the implementer to create
their own scripting instructions for test stimulus. The stimulus script or test case contains the instructions in a
regular ASCII text file. The function of the instructions is coded in VHDL as part of the test bench. The test
bench VHDL package contains procedures to read, parse and execute the test script (stimulus file, test case,
script). The script is evaluated in two passes. The first pass reads the instructions from the stimulus file, checks
the validity of the instructions, adds valid instructions to instruction sequence (inst_sequ) and creates the
variable list (defined_vars). The first pass leaves everything needed in memory and happens at time zero of the
simulation. The second pass is the execution pass. Instructions are referenced by their line numbers and return
the instruction text, up to 6 parameters in integer form and one text string pointer. This is then fed down an elsif
chain where the instruction text is used to choose the correct VHDL instruction sequence. At this point each
instruction could be controlling the timing of the test case.

VHDL Test Bench Users Guide Version: 2.0 Beta 1

GNU VHDL Test Bench May, 2011

1.3 Scope
This document provides the usage recommendations and detailed functionality of the test bench environment. It
is expected that once this document has been read, the user will have the knowledge to use the environment.
For more information see the link in Other sources of Information.

1.4 Interested Parties
All VHDL designers can benefit from the use of a solid but flexible foundation. The VHDL test bench package
provides a very good starting point for any effort requiring verification using the VHDL language. This
document should provide you all you need to use and implement the package.

For those in school, needing a predefined verification environment or wanting to study a verification
environment, this package should provide a good example of how VHDL can be used in different ways.

1.5 Why?
There are several reasons why you may want to use this VHDL test bench package. The fact that you may only
have access to VHDL or VHDL is your main HDL language, is one good reason. The package implementation
is pure VHDL with a little generation application that produces VHDL code.

Another reason to use this system could be that you and/or your team do not have a standard method of
encapsulating your DUT in a test environment. The implementation of a common test environment, enables
reuse, quicker refresh on old work, better interaction between team members and a general feeling of security in
something you know.

Portability is another reason to use this VHDL test bench system. It is not that a test bench you create on a
specific tool set that may be portable. The environment it self will be. If for instance you were forced to change
tool sets in the middle of a project, if you did not use tool specific functionality in your implementation, you
should be able to just recompile and run your tests.

A small list of reasons to use the VHDL test bench system:

– ease of use

– implementation limited mostly by user skill level

– encourages reuse and in turn reduces test bench creation time frames

– enables multiple test case writers to be writing on the same test bench at the same time

– changes to a test case do not require recompilation of anything

– Industry proven implementation that provides results

– You wish to only use one language, VHDL, for all design and testing

– this is a free package

1.6 Other sources of Information
A blog has been started by the author, many of the topics found in this document are elaborated on there.

http://vhdltb.blogspot.com/

VHDL Test Bench Users Guide Version: 2.0 Beta 2

http://vhdltb.blogspot.com/

GNU VHDL Test Bench May, 2011

1.7 Document Acronyms
Term Definition

bhv Short for behave

DUT Device Under Test, could be the design RTL or a model

elsif A VHDL construct, is the 'else if' part of an if statement

ent Short for entity

FPGA Field programmable Gate Array

implementer the person editing and creating the test bench and test bench commands

Script file Same as the Stimulus file

Stimulus file The file which contains test case instructions, this is the default name of the file loaded by
the test bench environment.

str Short for structure

Test case Same as a Stimulus file

tb Test bench

ttb Top level test bench

ttb_gen_gui Top Level Test Bench Generator tcl\tk application

user A user is the person editing and creating the test cases using test bench commands

VHDL Programming language used to define FPGA / ASIC logic

VHDL Test Bench Users Guide Version: 2.0 Beta 3

GNU VHDL Test Bench May, 2011

2. Test Environment Usage Flow

This section presents the way the environment would typically be used by the author.

Illustration 1: Typical Test Bench Usage Flow

Consider the flow illustration above, Illustration 1: Typical Test Bench Usage Flow. This flow diagram
presents a basic flow of how the VHDL test bench package can be used to create a verification environment, to
test a DUT.

VHDL Test Bench Users Guide Version: 2.0 Beta 4

Obtain VHDL Coded Entity
&

Decide the test bench
methodology

Run ttb_gen_gui tcl\tc
application to generate

test bench files

Edit Test Bench file set
to suite tool requirements

and needed libraries

Get the environment
to Compile without

errors
Add Clock driver process

to the bhv file
Create, Reset, Read and

Verify instructions
in the bhv file

If required, add models
and model access

instructions

Using text editor
Create initial test case
that proves the DUT
will initialize correctly

Create test case that
proves access to the

DUT

Create self checking
 test case to

prove functional
test plan points

All Test plan
test cases
complete?

New Instructions
needed or more

test bench
Functionality?

Code new Instructions
or processes into

bhv file

NO

YES

Stimulus file
regression set

created

YES

NO

GNU VHDL Test Bench May, 2011

 The following assumes that the DUT is a synchronous design that has a reset input.

2.1 The DUT
To start using the environment it is required that the VHDL coded entity of the DUT be available. It is not
required that the architecture of the design be available, but the entity is the starting point. If the DUT
architecture is not available and you would like to ensure your environment will compile, replace the DUT
architecture with an empty definition. If later the DUT RTL is still not available, the verification person can
code behavioral code into the empty architecture to enable initial test bench functionality to be created and
confirmed.

With the DUT entity file available, the test bench can be generated using the ttb_gen_gui tool.

2.2 Choose The Methodology
Depending on how you like to do your verification, the test bench will be coded differently. If you are going to
create dynamic self checking test cases or you are going to record vectors and compare to some good vector set,
the test bench will be implemented in different ways. The commands that need to be created will be different.

As a preference, dynamic self checking test cases should be the first choice. This will suggest that you will
have to create commands to “read” various outputs, and “verify” the outputs are as expected.

As a last choice, vector collection and compare should be the chosen method. But this implementation may
include creating instructions that enable the test environment to collect different outputs at different times.

2.3 Generating the Test Bench
Using the ttb_gen_gui tool, generate the test bench. Once the initial files have been generated, the test bench
writer will then edit them for specifics. In the top level entity file, ttb_ent, the stimulus_file generic default
value is replaced with the default path to the stimulus file. The stimulus_file generic is a pointer to the file that
the test bench parses for instructions on what to do and when. The library includes and use statements need to
be updated to include any DUT specific libraries. The ttb_str file needs to be updated at the instantiation
statements depending on the structure of the design. The tb_ent file has to be updated only if you need more
libraries for the behave file. The tb_bhv file will be added to and edited many times as the test bench grows and
is developed. But as a starting point the clock generation is done in this file. The test bench creator will have to
add the clocking process(s) to meet the needs of the DUT. Once all this is done, the test bench should be
compiled. At this point it is an empty test bench environment and it should compile with out errors. Note that
the elsif loop has no wait statements yet, and your simulator may complain. This is ok because you will be
adding instructions with wait statements and this warning will go away.

2.4 Creating the Initial Instructions
The test bench bhv file template contains several default instructions. Those are presented later in this
document. It would be beneficial to review these instructions and be familiar with their implementation before
creating your own instructions.

As a starting point, the first instruction that would be included in all test environments is the “reset” type
instruction. This instruction is the one that applies the reset to the DUT and test bench elements. It is expected
that all items need to be triggered to get into a default starting state. There may be several reset type
instructions in one environment, one to reset everything, one to reset just the DUT and could be one to reset test
bench models. These instructions would be created if the elements of the test environment need to be reset
independent of each other.

Another very common instruction to consider is the “wait” type instructions. These instructions are used to time
activities in a test case. For instance, an instruction to wait so many clock cycles is useful for just waiting for
some know amount of time. A wait on interrupt is also useful to enable the test case to wait till some indicator
triggers the test case to continue. As an addition to the wait instruction there should be a wait_max type

VHDL Test Bench Users Guide Version: 2.0 Beta 5

GNU VHDL Test Bench May, 2011

instruction that enables the test writer to set a time out for the wait. This is so that if the single event you are
waiting for never happens, the environment can terminate the simulation.

To facilitate control of the DUT, write type instructions will be needed. This type of instruction will access the
DUT possibly through an address and data buss or just the placing of values on input pins. What ever the write
type instruction(s) do, they will be the instructions used to setup and control the DUT.

To enable the collection of data, some kind of “read” instruction will be created. This instruction reads a target
item, data bus, register, output pins, and puts the value into a common place. As in, all read instructions put the
data in the same place, this could be a variable.

To confirm the data values are as expected, some kind of “verify” instructions will be created. The verify
instruction(s) enable the test writer to check that the value of the last read item is as expected. Several types of
verify instructions can be created, verify (whole word), verify_slice, verify_bit and they would all look to the
same place for the data to compare.

The four basic instruction groups described above will enable the test bench developer to get started at the test
bench / test case creation. As new instructions are needed, they are added.

Depending on the complexity of the test bench environment, there may be some instructions that are needed to
initialize, access and / or control test bench models.

2.5 Writing Test Cases (stm files)
Once the test bench initial instructions have been created, test cases may start to be created. The test case is
created by a person or persons through the use of a simple text editor. The test case writer will create the file
containing instructions defined in the test bench bhv file. As and example, please examine the following:

-- This is an example test case

-- using instructions defined in previous sections. << actual comment seen in test scripts

DEFINE_VAR STAT_ADDR x001000 -- define status address variable (test bench default instruction)

DEFINE_VAR CTL_ADDR x001004 -- define control register address variable

RESET_SYS -- The reset instruction, DUT and test bench initialization.

WRITE $CTL_ADDR x01 -- Write to the control register some value (assume DUT enable)

WAIT_CYCS 1000 -- Waiting for 1000 clock cycles to go by.

READ $STAT_ADDR -- Read some status to some internal variable after waiting

VERIFY x0055 -- Testing the read value is as expected.

FINISH -- Terminating statement for the test case (test bench default instruction)

The test case presented above is very simple. Some of the syntax is presented later in this document. This test
case could be created by a test writer with a simple text editor in a matter of moments. As the test case writer(s)
progress into the test case writing phase of a verification effort, they will find that the initial instructions are not
enough to do the testing they need to do. At any point new instructions may be added to a test environment.
Once added to the environment the new instructions can be used in test cases. Test cases that are hand written
are typically directed type tests. Unless the test bench is created with randomization instructions, most of the
test cases written will be directed type test cases.

Another way to write test cases is to have a program generate them. Depending on the type of DUT you are
testing, randomization may be a target test methodology. A test case generator can facilitate both ease of test
writing and randomization. This is a method that should be considered when the DUT is very complicated.

VHDL Test Bench Users Guide Version: 2.0 Beta 6

GNU VHDL Test Bench May, 2011

2.6 The Regression Set
It is assumed that the test case writer is working from a “Test Plan”. The Test Plan is a document which states
what tests are going to be created and what functionality each test validates. The Test Plan is created from the
document that contains the functional requirements of the DUT. The test case writer will create test cases
(stimulus files) until all those stated in the test plan are complete and working as expected.

If the tools are available, it is now time to do code coverage. Using all the test cases created run them with code
coverage enabled. Any missing code should be evaluated and determined what was missed. Once the missed
code is determined, existing tests can be upgraded or new tests created to cover the missed statements or
branches. Once an acceptable level of coverage is achieved, it is considered that all of the test cases written
constitute the full regression set.

VHDL Test Bench Users Guide Version: 2.0 Beta 7

GNU VHDL Test Bench May, 2011

3. The VHDL Test Bench

Usage of the environment can be done in many ways. Part of the objective of using a common verification
environment is to use it in a common way. One thing about the test bench package and its components is that it
is very flexible. If users implement in a common way then the ability to take up other's work becomes easier.
Below is a few recommendations and then some details of the environment.

3.1 Recommended directory and file structure
The following directory and file naming is used through out the remainder of this document.

Design name directory -- the top level test directory name, point of simulator execution
 vhdl -- The directory holding all test bench VHDL files
 stm -- The directory holding all the test scripts (stimulus files)
 work -- The compile directory for compiled test bench VHDL (not usually DUT)

The test bench comprises four VHDL files.
 (name)_ttb_ent.vhd -- Top entity, empty except for stimulus_file generic
 (name)_ttb_str.vhd -- Top level structure, connect DUT to test bench
 (name)_tb_ent.vhd -- tb entity, is exact copy of DUT entity except for pin direction
 (name)_tb_bhv.vhd -- tb behave, contains all that is not the DUT

It is highly recommended that a “team” document and follow a recommended test environment directory
structure. When starting a new test bench creation, use ttb_gen_gui to generate the test bench for you and get
the template from the central location. You should find a TCL/TK application called ttb_gen_gui included with
the VHDL Test Bench package offering. The application is described section 6. Some modifications to
ttb_gen_gui.tcl will have to be made to make it work in a centralized team or group environment.

3.2 Default Test Bench Structure
A pictorial representation of the default test bench environment is provided below in Figure 1 - Default Test
Bench Structure. As can be seen the stimulus file is directly linked to the tb_bhv. This link is facilitated
through the use of a generic at the top level ttb_ent called stimulus_file.

Usually, a test environment will contain many test scripts, and obviously they can not have all the same name.
The user can control which test file will be loaded in one of two ways in windows environments. First the user
can just copy the test file to stimulus_file.stm. (this assumes the generic points to this file by default, it may be
modified to point to something else) Or the user could just edit the default file and rename it later as needed.
The second way to control which stimulus file is loaded is to pass a new value to the top level generic.
Modelsim allows this and the syntax is:

vsim work.pci_ttb_top -Gstimulus_file=sim/test3.stm

This says, start vsim and load compiled object pci_ttb_top from the work library, and all so assign to the
stimulus_file generic a value of 'sim/test3.stm'. This method is used for regressions, and is the reason for adding
it to the top level entity.

VHDL Test Bench Users Guide Version: 2.0 Beta 8

GNU VHDL Test Bench May, 2011

Figure 1 - Default Test Bench Structure

3.3 Implementation Variations
The default implementation of the VHDL test bench is to have the test bench wrapped around the DUT. This is
depicted in Figure 1 - Default Test Bench Structure. The file set generated by ttb_gen_gui creates the structure
that is presented in Figure 1 - Default Test Bench Structure. There are other ways that the test bench package
can be used to facilitate other configurations.

3.3.1 Internal Test Bench Variant

This implementation puts the script parser inside the DUT. For instance, if your DUT has an internal processor,
the script parsing part of the test environment can be used to emulate the processor. This is depicted in Figure
2: Script Driven Processor Implementation, where the the stimulus file is linked to the internal processor block.
The scripting commands are created such that they interface to the processor buses. They assign and react to
signaling just as a processor would. Instructions can emulate assembly instructions exactly or instructions can
be created to implement more abstract functionality. This is accomplished by making the bhv file the
architecture of the processor entity. Then adding the instructions and VHDL code to implement them.

As can be seen in Figure 2: Script Driven Processor Implementation, there is supporting test bench logic out
side the DUT. This will be required to provide such things as clocks, memory and reset. If control of the
supporting test bench logic requires dynamic actions, there may have to be links from the processor to outside
the DUT. Some tool sets provide this facility, but VHDL does not allow arbitrary access across entity
boundaries. For instances where control of the over all test bench can not be facilitated from one control point,
a duel or multi script system may be considered. See the following section.

VHDL Test Bench Users Guide Version: 2.0 Beta 9

DUT

Stimulus File

ttb_ent

ttb_str
tb_ent

tb_bhv

GNU VHDL Test Bench May, 2011

Figure 2: Script Driven Processor Implementation

3.3.2 Multi Script Implementations

The test bench implementation depicted in Figure 3: Multi Script Variant Implementation, is a variant of a
previous figure.

Figure 3: Multi Script Variant Implementation

As can be seen in Figure 3: Multi Script Variant Implementation, the test bench is reading two stimulus files.
One script is being read by the top level bhv file and the other by an internal processor bhv file. The bhv file of
the processor can be considered a bus functional model (BMF) of the processor. Each of the two bhv files,
usually point to a different stimulus files by default. This is done by assigning the default stimulus file names to
be different for each VHDL entity generic. The top level test bench stimulus file can be very simple if all that is
required is to provide reset and then wait. It could also be very complicated by controlling external models,
asserting external inputs, monitoring external outputs.
Once the user realizes that the VHDL bhv file is the heart of the system and that the rest is just structure, they
will be able to implement complicated variations. It should be remembered that the system was created to be

VHDL Test Bench Users Guide Version: 2.0 Beta 10

Processor Design Logic

Supporting tb Logic

Stimulus
File

DUT

DUT

Stimulus File

ttb_ent

ttb_str
tb_ent

tb_bhv

Processor

Processor
Stimulus File

GNU VHDL Test Bench May, 2011

simple, but flexible. Multi script systems will make it more complicated to create test cases and will result in a
more complicated test bench implementation.

3.4 Script Parsing Conventions
This section contains the details of the system with regards to parsing of the test scripts. The script parser is
what the VHDL Test Bench Package is. It is very limited, and all the particulars are stated in this section.

3.4.1 Case
The case of all text in the stimulus file is significant.

3.4.2 White space

There must be white space between fields with the exception being the comment. White space characters are,
'space' and tab.

3.4.3 Comments
Comments can be added within the script file. The '--' is used as the comment delimiter, and when encountered
parsing of the current line is halted. Anything on a given line, after and including the '--' character sequence is
ignored.

Examples
 ADD_VAR TEMP 5 -- add 5 to the TEMP Variable
 ADD_VAR TEMP 5-- add 5 to the TEMP Variable
 -- An all comment line

3.4.4 Variables
Variables can be created with in the scripting environment. To create a variable the DEFINE_VAR instruction
is used. Variables can be defined anywhere in the script. The parser uses the DEFINE_VAR instruction to
create and add to the list of variables, a new variable. The first pass of the script parser puts the variables onto a
link list in the order they were defined. Once a variable is defined, it can be referenced in two ways. One way
is to specify to return the value of the variable: $var_name returns the value of the variable. Second way, is to
specify to return the index to the variable: var_name returns the index to the variable.

Examples
 DEFINE_VAR VAR1 10 -- define variable 'VAR1' to have a value of 10
 DEFINE_VAR VAR2 20 -- define variable 'VAR2' to have a value of 20
 .
 .
 READ_DUT $VAR1 -- some kind of read instruction, passing a value of 10 to the instruction
 ADD_VAR VAR1 $VAR2 -- add to VAR1 the Value of VAR2

3.4.5 Special Variables
To facilitate branching and jumping a special variable, we will call an “in-line variable”, can be created. This is
a pointer type of variable which is not used like the variables created with the DEFINE_VAR instruction. A
text field terminated by the ':' character will create a variable with a value equal to the sequence number or 'line
number' it is currently on. This can then be used as a jump or call pointer.

VHDL Test Bench Users Guide Version: 2.0 Beta 11

GNU VHDL Test Bench May, 2011

Example
.
.
CALL $TEST_FUNCTION
.
.
TEST_FUNCTION:
 ADD_VAR VAR1 10
RETURN_CALL

3.4.6 Condition Operator Constants

To facilitate the WHILE and IF instructions the parser will recognize condition fields. The access_variable
procedure will search the first character of each text_field for condition code text. This means that the special
characters can not be used at the start of variable names. If the special text is found the relative value is
returned into the elsif chain. The instruction must now act on the returned integer in the proper way. Usage
examples can be seen in the WHILE and IF instructions.

The parser can detect the following fields and pass the indicated integer to the elsif chain.

Text Meaning Return value

= Left side equals right side 0

!= Left side is not equal right side 1

> Left side is greater than the right side 2

< Left side is less then the right side 3

>= Left side is greater than or equal to the right side 4

<= Left side is less than or equal to the right side 5

3.4.7 Number Notation:
The stimulus file parser recognizes binary, decimal and hexadecimal numbers. For binary numbers the number
is proceeded by a 'b', lower case only. For a hexadecimal numbers the number is proceeded by a 'x' or 'h', lower
case only. If the first digit of the number is a decimal number character, the number is considered decimal
notation. Any other character will make the parser consider the field a variable. All values are converted to
integers within the test bench data records.

Examples
 DEFINE_VAR VAR1 10 -- define VAR1 to have value decimal 10
 DEFINE_VAR VAR2 xabc800 -- define VAR2 to have a hexadecimal value of 'abc800'
 DEFINE_VAR VAR3 habc800 -- define VAR3 to have a hexadecimal value of 'abc800'
 EQU_VAR VAR1 b0011001 -- equate the value of VAR1 to binary value '11001'

3.4.8 Dynamic Text Strings

The stimulus file parser recognizes a text field within an instruction. The '”' (double quote) character defines
the beginning of the text field. Anything after the '”' character is considered to be part of the text string, for that
line of the stimulus file. There must only be one '”' in a line, indicating the beginning of the text field. The

VHDL Test Bench Users Guide Version: 2.0 Beta 12

GNU VHDL Test Bench May, 2011

characters after the '”' are stored in a string and a pointer to that string is returned into the elsif chain. The only
thing that will terminate the string parsing is the end of the string, the comment delimiter or max string length
reached (200). The maximum string length is 200 characters, and any string longer than that will be truncated at
character 200. The double quote is not included as part of the final string. There must be at lease one white
space character before the '”' character. Dynamic text strings must also be placed before any comment delimiter
in that instruction line.

The text string feature is part of every instruction, and is not optional nor does it require any pre-definition or
pre-configuration. For every line of a stimulus file, if the '”' is encountered, a pointer to a string is created. The
user may then do with this string as they wish. The tb_pkg provides procedures to print the text string to the
console. Details of the two procedures are provided in a section later in this document.

Note: any white space found at the end of a text string up to the comment delimiter will be included in any
string output. The exception to this is when the text string is used for an include file, the extra white space is
stripped off before using it for a file name.

Examples:

DEFINE_VAR ACQ_CTL1 xD0010034

DEFINE_VAR VALUE 55

.

.

PPC_WRITE $ACQ_CTL1 x000DEF “Writing to acquisition control x0DEF

This will write to the console 'Writing to acquisition control x0DEF' each time this stimulus file line is run.
This is provided that the user does a txt_print call. See section 8 for details of the txt_print procedure.

PPC_WRITE $ACQ_CTL1 $VALUE ” #&% Writing to $ACQ_CTL1 $VALUE

This will write to the console ' #&% Writing to $ACQ_CTL1 $VALUE' each time this stimulus file line is run.
This is provided that the user does a txt_print call. See section 8 for details of the txt_print procedure.

Or, this will write to the console ' #&% Writing to 0xD0010034 0x37'. each time this stimulus file line is run.
This is provided the user does a txt_print_wvar call. See section 8 for details of the txt_print_wvar procedure.

Another way to use the dynamic text is for setting environment strings from the stimulus file. With the
following definition, a string (fname) can be written to.

Define a signal of type stm_text, a string subtype defined in the test bench package.

Signal fname : stm_text;
.

.

Then define the instruction to assign the passed txt pointer to the signal.

--
 elsif (instruction(1 to len) = "SET_FN") then
 i := 1;
 while(txt(i) /= nul) loop
 fname(i) <= txt(i);
 i := i + 1;
 end loop;
Once the file name has been set, the string could be used to open files for loading or dumping data.

VHDL Test Bench Users Guide Version: 2.0 Beta 13

GNU VHDL Test Bench May, 2011

3.5 Search Order
The test bench package, release Feb 2008, changed the searching method for searching the list of instructions,
during the execution phase. Two variables were added to the access_inst_sequ call that enable the searching to
start from where the last instruction was accessed most of the time. This differs from previous package versions
in that they searched from the top of the list each time. This change saves the CPU having to search the list of
instructions each time, except if the line is before the one that was last accessed. In the case where the
instruction line being searched for, is before the last instruction accessed, the system starts searching from the
beginning of the list of instructions. The order of the instructions on the list of instructions, is the same as the
were encountered when the package parsed the script. As an example, LOOP type instructions will cause the
system to search for the top of the loop, from the start of the instruction list, each iteration through the loop.
Large scripts will also benefit greatly from the new search implementation.

VHDL Test Bench Users Guide Version: 2.0 Beta 14

GNU VHDL Test Bench May, 2011

4. Test Environment Instructions

4.1 Default Instructions
As a starting point several default instructions are included in the test bench environment. These are considered
among the most useful instructions or are nice to have as a common set among different test benches.
Following is an explanation of each of the default instructions.

DEFINE_VAR
is the only way to define / create a stimulus file variable. The implementation of this instruction is
solely done within the test bench package. The DEFINE_VAR instruction is not added to the
instruction list, as of version 1.2 of the test bench package.

ABORT
is the instruction that may be called in case of failure. If this instruction is encountered, the simulation
is halted and a failure message is displayed.

FINISH
is the instruction which is called at the end of a simulation. When this instruction is encountered the
simulation is halted and a message is displayed stating the simulation passed.

INCLUDE
is the instruction used to load in another stimulus file. The instructions found in the include file are
inserted into the sequence of instructions as if they were part of the calling stimulus file. Includes can
not be nested. The file name may be specified in one of two ways. One way is just stated, its path and
name, no quoting required. This limits the path name length to the size of type text_field (48
characters).

Example:
INCLUDE stm/include.stm

The second way is to use the text string method. This allows the text path name to be the length of type
stm_text (200 characters).

Example:
INCLUDE “C:/work/dir1/dir2/dir3/dir4/dir5/stm/include.stm

EQU_VAR
is the instruction used to change the value of an existing variable.

ADD_VAR
is the instruction used to add a value to an existing variable.

SUB_VAR
is the instruction used to subtract a value from an existing variable.

CALL
is the instruction use to jump execution to a subroutine. The use of this instruction should include a
RETURN_CALL instruction as there is a stack maintained in the back ground. The limit to the nested
call depth is 8.

VHDL Test Bench Users Guide Version: 2.0 Beta 15

GNU VHDL Test Bench May, 2011

RETURN_CALL
is the instruction which terminates a CALL sequence. This instruction will return sequence execution
to the point from which is was called.

Example:

DEFINE_VAR TEMP_DAT x0
DEFINE_VAR TEMP_ADD x01000
.
.
.
EQU_VAR TEMP_ADD x02000
CALL $ACCESS_DUT
.
.
.
FINISH

ACCESS_DUT:
 READ_DUT $TEMP_ADD
 WRITE_DUT $TEMP_ADD $TEMP_DAT
 ADD_VAR TEMP_ADD 4
RETURN_CALL

LOOP
is a simple loop instruction. Used to execute a set of instructions a number of times between it and the
END_LOOP instruction.

END_LOOP
is the instruction used to terminate a loop instruction.

Example:

DEFINE_VAR ADDR x80
DEFINE_VAR DATA x20
.
.
LOOP 5
 WRITE_DUT $ADDR $DATA
 ADD_VAR ADDR 4
END_LOOP

JUMP
This instruction is used to go to particular location in the script. NOTE: When a JUMP instruction is
encountered, all WHILE and CALL stacks are zeroed. This is to prevent problems with jumping out of
one of these constructs.

VHDL Test Bench Users Guide Version: 2.0 Beta 16

GNU VHDL Test Bench May, 2011

Example:
JUMP $NEXT1
.
.

NEXT1: -- <<< NOTE: Inline variable
 ADD_VAR $VAR1 20

IF, ELSEIF, ELSE, END_IF
These instructions form the structure for an “if” type condition script sequence. The implementation is
that of a regular if statement found in other languages. The current implementation can not operate on
nested if statements.

Example:
IF $var < 10
 ADD_VAR var 1
ELSEIF $var = 10
 EQU_VAR var 2
ELSE
 EQU_VAR var 2
END_IF

WHILE, END_WHILE
These instructions make up the structure for a “while” type condition script sequence. The
implementation is that like any other language. If a JUMP instruction is used with in a WHILE loop, all
while loop status is zeroed. This means that if you jump back into a while loop, it may not work as
expected.

The WHIILE instruction can be nested to a level of 8.

Example:
WHILE $var != 10
 ADD_VAR var 1
END_WHILE

MESSAGE_ON
is the instruction which sets the messages variable to false. This then makes all assert statements fail
and messages are put out.

MESSAGE_OFF
is the instruction which sets the messages variable to true. This then makes all assert statements pass
and messages are suppressed.

4.2 User Defined Instructions
The test bench implementer is required to create instructions for use in test case writing. These instructions will
be more specific for the DUT than those default instructions of the test bench environment. An instruction is
defined using the define_instruction procedure call, the user then codes the new instruction into the elsif chain.
instructions are created below the default instructions of the test bench template. copy an elsif line and replace
the existing instruction with the new instruction text, remembering case sensitivity. code the VHDL below the
condition statement to implement the required functionality.

VHDL Test Bench Users Guide Version: 2.0 Beta 17

GNU VHDL Test Bench May, 2011

The best instruction is one that says something about what it does. Also, flexible instructions are very good to
reduce test writing complexity. For instance, if you had a DUT with 20 ports. Creating an instruction to read
data from every port you would have 20 different instructions. By using the parameters, you can case on one of
them and use one READ instruction to read all 20 different ports.

Example VHDL code in the bhv file
--

 elsif (instruction(1 to len) = "READ") then

 Case par1 is

 when 0 =>

 temp_data <= port1;

 when 1 =>

 temp_data <= port2;

 when 2 =>

 temp_data <= port3;

 when 3 =>

 temp_data <= port4;

Script code example:

DEFINE_VAR PORT1 0

DEFINE_VAR PORT2 1

DEFINE_VAR PORT3 2

DEFINE_VAR PORT4 3

READ $PORT1

READ $PORT2

READ $PORT3

READ $PORT4

4.2.1 Commands with Variable Number of Parameters

The 2011 release of the test bench package added one feature, commands with variable parameters. This feature
is configurable on a command by command basis through the “args” field. If the “args” field is defined to be
greater than six, the check for the correct number of parameters is by passed. The onus is on the implementer to
test the command for correct number of parameters, or ignore anything more than needed. By default, the
parsing of the script involves testing for incorrect syntax before the simulation starts. This feature is in place,
for all other commands, to save time by avoiding the discovery of scripting syntax errors at the time of
execution. Which as stated, could be hours into a simulation.

The number of parameters that are valid is contained in the stimulus line record. This is one of the few
additions to the test bench package. The implementer has access to this value through the last_sequ_ptr
variable, the valid_fields field. This enables the implementation to check for the number of valid parameters
and act accordingly. Still, the discovery of scripting errors in a test case will not be discovered until that line
executes.

VHDL Test Bench Users Guide Version: 2.0 Beta 18

GNU VHDL Test Bench May, 2011

4.2.2 Procedures

The use of procedures within the bhv file is recommended. Interface signaling are good things to put into a
procedure. Once created any instruction created can take advantage of the procedure, saving coding and
creating a single point of interface.

4.2.3 Concurrency

At some point it will become apparent that something will have to happen at the same time as something else.
Some kind of complicated instruction may be considered. At this time, a VHDL model to relieve the stimulus
file from producing everything, should be created. The use of models will enable many things to be taking place
at the same time, and the stimulus file controlling and checking as the test progresses. Such things to be
considered for a model implementation are objects like memories, data generators, data checkers and standard
interfaces.

VHDL Test Bench Users Guide Version: 2.0 Beta 19

GNU VHDL Test Bench May, 2011

5. Test Bench Working Details
Of the four files that make up the test bench, as stated above, the (name)_tb_bhv.vhd file is the most important.
This file should house all models and all VHDL needed to deal with the DUT. While generating the test bench,
using the ttb_gen_gui application, the bhv file is an optional generation. If the DUT changes its pin out,
ttb_gen_gui can be used to regenerate the other three files, but not the bhv file. This file is initially copied from
the template, and once you are well into a test environment you will not want to replace that file. The template
is coded to meet the VHDL 93 coding standard. The required VHDL standard packages are:

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use std.textio.all;

The bhv file is intended to contain all clock sources, models connected to the DUT, instruction definition and
any other processes or models used to monitor or control the DUT. The process that handles the stimulus file
parsing and execution is the Read_file process. Details are:

5.1 VHDL Variables
inst_list

is the linked list of defined instructions. This is the list that is created by the define_instruction
procedure as per user requirements. Also several default instructions are defined to provide some basic
functionality. The order of the list is the same as the order of the “define_instruction” calls. All
searches to this list are done from the top (first) down. Warning: this variable must not be modified by
the user.

defined_vars
is the linked list of defined variables. This list is created as DEFINE_VAR instructions are encountered
or in-line variables are found in the stimulus file during parsing. The order of the list is the same as the
order of the “DEFINE_VAR” stimulus file calls. All searches to this list are done from the top (first)
down. Warning: this variable must not be modified by the user.

inst_sequ
is a linked list of instructions. This is the test as it was read from the stimulus file, with only the
instructions. Warning: this variable must not be modified by the user.

file_list
is a link list of file names with index. The index is used instead of the full file name in the inst_sequ.
Warning: this variable must not be modified by the user.

last_sequ_num
is the sequence number of the last instruction recovered from the list of instructions. This variable is
used to determine which way to search through list of instructions. Warning: this variable must not be
modified by the user.

last_sequ_ptr
is the address of the last instruction recovered from the list of instructions. This variable is used to
access the list of instructions. Warning: this variable must not be modified by the user.

instruction
is the text field of the instruction, the instruction text itself. This is a return parameter of the
access_inst_sequ procedure call, and is of type text_field.

par1
is the first field of an instruction. This is a return parameter of the access_inst_sequ procedure call and
is of type integer.

par2

VHDL Test Bench Users Guide Version: 2.0 Beta 20

GNU VHDL Test Bench May, 2011

is the second field of an instruction. This is a return parameter of the access_inst_sequ procedure call
and is of type integer.

par3
is the third field of an instruction. This is a return parameter of the access_inst_sequ procedure call and
is of type integer.

par4
is the fourth field of an instruction. This is a return parameter of the access_inst_sequ procedure call
and is of type integer.

par5
is the fifth field of an instruction. This is a return parameter of the access_inst_sequ procedure call and
is of type integer.

par6
is the sixth field of an instruction. This is a return parameter of the access_inst_sequ procedure call and
is of type integer.

txt
is the pointer to the text string, if any, of this stimulus line. Is of type stm_text_ptr.

len
is the length of the instruction in number of characters. This is a return value so that the exact length of
an instruction is known for compares. len is of type integer.

file_name
is the file passed into the system by the stimulus_file generic. file_name is of type text_line.

file_line
is the line number in the text file that this sequence is from. This is a return value from the
access_inst_sequ procedure call and is type integer. This is provided so that user commands can
message out the line number from the stimulus file as needed.

line
is the sequence number of the current instruction. This value is the actual line or sequence number in
the test sequence. It is of type integer and is used to index into the instruction sequence. User
modification of this value will effect the next line recovered from the sequence. (not normally
modified by the user instructions)

5.2 VHDL Procedures
define_instruction

is the procedure that must be called to add a new instruction to the list of valid instructions. It is defined
as define_instruction(inst_list, "INSTRUCTION_TEXT", Number of Parameters). The user definable
parts are, the “INSTRUCTION_TEXT” and number of parameters. The instruction text is what the user
wants to make the instruction read in stimulus files, and case matters. The number of parameters is
defined by the user and checked by the parser during the file read procedure. If the number of
parameters is set to seven or more, the checking by the parser is by passed. This enables the
implementation of commands with a variable number of parameters. The dynamic text string does not
require configuration and is not optional, it is part of every instruction.

read_instruction_file
 --
 -- Read, test, and load the stimulus file
 read_instruction_file(stimulus, inst_list, defined_vars, inst_sequ, file_list);

is the procedure that reads the stimulus file into memory as an instruction sequence. Various checks are
performed and if errors are found, the simulation is halted and the user is given an error message. This
procedure is considered the first pass of the stimulus file parsing. It is called once and is part of the
system. There is no user intervention required, nor should the user modify this procedure call.

access_inst_sequ

VHDL Test Bench Users Guide Version: 2.0 Beta 21

GNU VHDL Test Bench May, 2011

 access_inst_sequ(inst_sequ, defined_vars, file_list, v_line, instruction,
 par1, par2, par3, par4, par5, par6, txt, len, file_name, file_line,

 last_sequ_num, last_sequ_ptr);
is the procedure which accesses the instruction sequence in memory, indexed by its sequence number.
(line) The procedure returns the instruction text, returns converted variables to integer or index, returns
a pointer to any text, and returns the line number in the stimulus file this sequence is from. Also, the
last sequence number and pointer to the last sequence number are passed in and out.

VHDL Test Bench Users Guide Version: 2.0 Beta 22

GNU VHDL Test Bench May, 2011

6. Test Bench Generator Tool

The test bench files that make up the structure of the connectivity are rather tedious to create. To make this
process a push button operation, a new tcl\tk code generator is provided.

6.1 TTB Gen Plus 2 Usage

VHDL Test Bench Users Guide Version: 2.0 Beta 23

GNU VHDL Test Bench May, 2011

7. The Test Bench And BFMs

The test bench system does, in no way, force any particular implementation methodology for BFM creation and
usage. From the authors past experience, it has been observed that a common BFM strategy has many benefits.
A standard method for BFM building and interface has been created for use with the VHDL test bench. This
section presents and describes this standard method. An example provided in the release, uses the stimulus
access port on a model to show and example of test bench usage.

7.1 The Stimulus Access Port
Version 2 of the test bench package defines record types for use as stimulus access ports.
 -- define the stimulus slave control record types
 type stm_sctl is record
 rst_n : std_logic;
 addr : std_logic_vector(31 downto 0);
 wdat : std_logic_vector(31 downto 0);
 rwn : std_logic;
 req_n : std_logic;
 end record;
 type stm_sack is record
 rdat : std_logic_vector(31 downto 0);
 ack_n : std_logic;
 rdy_n : std_logic;
 irq_n : std_logic;
 -- define the stimulus master control record types
 type stm_mctl is record
 addr : std_logic_vector(31 downto 0);
 wdat : std_logic_vector(31 downto 0);
 rwn : std_logic;
 req_n : std_logic;
 breq : std_logic;
 end record;
 type stm_mack is record
 rdat : std_logic_vector(31 downto 0);
 slv_rdy : std_logic_vector(15 downto 0);
 slv_irq : std_logic_vector(15 downto 0);
 ack_n : std_logic;
 bgrant : std_logic;
 end record;

VHDL Test Bench Users Guide Version: 2.0 Beta 24

GNU VHDL Test Bench May, 2011

Type stm_sctl is the stimulus slave control bus and is originated from a master. Type stm_sack is the stimulus
slave acknowledgment bus and is driven by the selected slave. The master types are for advanced test benches
where BFMs take control of the stimulus bus. Otherwise, the stimulus file is the default master in the stimulus
bus system. The data bus of the stimulus bus system has been made separate for read and write operations.
This prepares the bus system for implementation on an FPGA with synthesized test bench BFMs.

The stm_sctl type contains all the connections needed to control the BFM from the stimulus file or master BFM.
On a BFM this record type is defined as an input. The record elements are intended as detailed below:

rst_n: a reset signal input to reset or initialize the stimulus interface. Active low.

addr: a 32 bit std_logic input that represents the address being accessed.

wdat: a 32 bit std_logic input that represents the data being written to the accessed location.

rwn: a read / write_not signal for selecting read and write operations.

req_n: a request or select signal input, to select the BFM being addressed. Active low.

The stm_sack type contains all the connections that the slave would output in acknowledgment of a request.
This includes read data, rdat and ack_n outputs. The record elements are intended as detailed below:

rdat: a 32 bit std_logic output that is the read data from the addressed location during a read cycle.

ack_n: an output signal that acknowledges a request. Active low.

rdy_n: an output signal that indicates readiness. Used by the BFM to indicate it is busy with the last request.
The BFM is ready when this output is low.

irq_n: an output signal to indicate that this BFM needs servicing. Active low.

The idea of the stimulus bus implementation changes is to detach stimulus IO on a BFM from DUT interfaces.
Make the stimulus bus have a small profile in the over all system, yet be able to provide full functionality. The
record types make the number of pins for stimulus access much smaller, yet introduce huge flexibility. The
changes to the stimulus bus are presented below.

The addition of the reset input, rst_n, enables the BFM to be initialized separately from the DUT reset. It is part
of the record and is easy to connect to any source of reset signals.

The change to a separate read and write bus enables the stimulus bus to migrate to a hardware implementation
more easily. It is not recommended that by-directional buses be implemented in an FPGA.

The addition of the ready, rdy_n, output is to facilitate the need for some BFMs to indicate they are busy. This
is usually the result of a previous command, the packet has not been fully transmitted or applied yet, I am not
ready. The implementation of this output is BFM specific and user created.

The addition of the interrupt, irq_n, output is to facilitate service requesting from a slave. This output could
also be used as an indicator of errors from a monitor BFM.

The record types provide flexibility to change the bus structure as needed. If the BFM is to be synthesized, a
clock input will have to be added to the stm_sctl type and a new architecture created for clocked access.

The master record types will not be detailed here, as some exploration is needed. The blog VHDL Test Bench
Blog http://vhdltb.blogspot.com/ will have postings of examples of possible implementations of master BFMs.

The stimulus access port is handled by the STM_access process found in the model code. This process handles
the physical signaling and timing of the STM_ACK_N signal. The few ps of delay are added in to make the
accesses viewable in simulation. The STM_access process triggers the REG_access process to perform the read
or write to the models register set. When creating a new model the STM_access process can be copied from

VHDL Test Bench Users Guide Version: 2.0 Beta 25

http://vhdltb.blogspot.com/

GNU VHDL Test Bench May, 2011

another model. Though the REG_access process can be copied from another model, it most likely will have to
be modified to suit a new register set implementation.

7.2 Connecting BFMs into the Test Bench
With the assumption that models are not accessed simultaneously, the following connection strategy can be
implemented. The address, data and rwn pins can be connected to all models in a bus like fashion. A single
acknowledge signal can be formed by “anding” all the models acknowledge signals together. Each request pin
will require a separate signal and controlling statement in a stimulus instruction.
-- WRITE_STM

-- par1 model selection

-- par2 address

-- par3 data

 elsif (instruction(1 to len) = "WRITE_STM") then

 stm_addr <= to_stdlogicvector(par2,32);

 stm_data <= to_stdlogicvector(par3,32);

 stm_rwn <= '0';

 case par1 is

 when 0 =>

 stm_req_bfm1 <= '0';

 when 1 =>

 stm_req_bfm2 <= '0';

 when others =>

 null;

 end case;

 wait until stm_ack'event and stm_ack = '0';

 stm_req_bfm1 <= '1';

 stm_req_bfm2 <= '1';

 wait until stm_ack'event and stm_ack = '1';

 stm_addr <= (others => 'Z');

 stm_data <= (others => 'Z');

 stm_rwn <= '1';

 wait for 0 ps;

The code above is an example of a multi BFM access type of write instruction. Depending on the value
of parameter #1 a specific BFM will be selected for the access operation. This code would be part of
the elseif change of instruction definitions. The selection statement is found in the case statement. The
stm_ack signal is the product of the anding of the ack signal from bfm1 and bfm2. Waiting for 0 ps
causes a break from the process and signals to be updated / applied.

VHDL Test Bench Users Guide Version: 2.0 Beta 26

GNU VHDL Test Bench May, 2011

8. Functions Provided By The Test Bench Package

Several functions and procedures are available from the test bench package. Provided here is a description of
the provisions of the package and their usage.

8.1 c2std_vec
This function converts a character to a standard logic vector of 4 bits.

 function c2std_vec(c: in character) return std_logic_vector;

The input character is converted to a 4 bit std_logic_vector. If a non-hexadecimal character is encountered an
error message is displayed and the simulation is terminated. This is usually used to covert text read in from a
file to vectors in the test bench.

8.2 define_instruction
This procedure is called to define a new instruction for use in stimulus files. The instruction set “inst_set”
variable is passed in. The new instruction “inst” is added to the list with indication of how many arguments will
be passed in “args”. (The 2011 addition enables the user to specify an unconstrained command length. If the
args value is greater than six, it will cause the parser to by pass the check for the correct number of parameters.)
The appended list is returned in “inst_set”.

 procedure define_instruction(variable inst_set: inout inst_def_ptr;

 constant inst: in string;

 constant args: in integer);

The instruction text must be less than 48 characters long and must not be a duplicate. If not, an error will be
indicated and the simulation terminated.

8.3 index_variable
This procedure is called to get the value of a variable by indexing it. Passing in the variable list, “var_list” and
the index, the value “value” and a valid indication “valid” are returned.

 procedure index_variable(variable var_list : in var_field_ptr;

 variable index : in integer;

 variable value : out integer;

 variable valid : out integer);

The only indication from this procedure call is the valid field value. If the index was valid, it returns as 1 else as
a 0. The user will have to test this status if they consider this needed. Valid variables are tested for and an
invalid variable should have been detected before this call could happen. This procedure is intended to give
user access to the variables. An example of usage can be found in the default variable manipulation
instructions.

VHDL Test Bench Users Guide Version: 2.0 Beta 27

GNU VHDL Test Bench May, 2011

8.4 update_variable
This procedure is called to update the value of a defined variable. Passing in the variable list, “var_list”, the
index and the value “value”, a valid indication “valid” is returned.

 procedure update_variable(variable var_list : in var_field_ptr;

 variable index : in integer;

 variable value : in integer;

 variable valid : out integer);

The only indication from the procedure is the valid output. It will be returned as a 1 if the transaction was
successful. The user will have to test this status if they consider this needed. Valid variables are tested for and
an invalid variable should have been detected before this call could happen. This procedure is intended to give
user access to the variables. An example of usage can be found in the default variable manipulation
instructions.

8.5 tokenize_line
This procedure is called to break the fields from a text_line. The test bench package defines a three types, a
text_line, size 256, a text_field, size 48 and a stm_text, size 200. This procedure can be used anytime text is
being read from a file and needs to be parsed into fields. It will parse up to 7 items from the line, one text string
and return the count of valid tokens in the valid integer field.

 procedure tokenize_line(variable text_line: in text_line;

 variable token1: out text_field;

 variable token2: out text_field;

 variable token3: out text_field;

 variable token4: out text_field;

 variable token5: out text_field;

 variable token6: out text_field;

 variable token7: out text_field;

 variable txt_ptr: out stm_text_ptr;

 variable valid: out integer);

 If a “--” sequence is encountered parsing halts and any tokens found are returned. If a '”' (double quote) is
encountered, the characters following it are copied to a string and txt_ptr is returned. All white space is
considered delimiter for fields. There is no error messages or error detection done by this procedure. If while
parsing out a txt_pointer string, the “--” sequence is encountered, any white space between the end of text and
the comment delimiter is included in the text string. This extra white space is removed if the txt_pointer string
is used for an INCLUDE instruction file name.

8.6 print
This procedure can be called any time the user wants to just print something out. This procedure will not print
out anything but the text provided. No time stamp like the assert type output.

 procedure print(s: in string);

VHDL Test Bench Users Guide Version: 2.0 Beta 28

GNU VHDL Test Bench May, 2011

8.7 txt_print
This procedure is used to print to the console the txt string. This string is actually a pointer to the string that is
returned with each instruction accessed. It is contained in the field named 'txt' that is part of the
access_inst_sequ call. This procedure will print the string as it is defined with no alterations to the text.

 procedure txt_print(variable ptr: in stm_text_ptr);

8.8 txt_print_wvar
This procedure is used to print to the console the txt string and substitute variables found. This string is actually
a pointer to the string that is returned with each instruction accessed. It is contained in the field named 'txt' that
is part of the access_inst_sequ call. This procedure will print the string and substitute any variable definitions
with current variable values.

 procedure txt_print_wvar(variable var_list : in var_field_ptr;

 variable ptr : in stm_text_ptr;

 constant b : in base) ;

Parameters passed are the variable list, var_list, the string pointer, txt and the base to display in, b. The variable
list is the one created by the test bench environment as the stimulus file is parsed. The ptr field is the text
pointer, txt, just have to pass it along. The display base must be included and is one of four choices, bin, oct,
hex, dec. The choices correspond to Binary, Octal, Hexadecimal, and Decimal. All variables found in a string
are converted to the same base representation.

The procedure parses the string and when a '$' is encountered it collects the field until the next white space. It
then tries to get the variable value, and if successful places it in the output string in the number base format
specified by b. This will most likely change the size of the over all string and in doing so, may cause truncation
if the string size limit is exceeded. The concept of a variable index is not know by this procedure, it only knows
of accessing, so the '$' must be included for the procedure to recognize there is a variable.

Examples:

 elsif (instruction(1 to len) = "TEST_INST") then

 print("A Test Message from TEST_INST");

 txt_print(txt);

The above instruction example, contains one call to print and one call to txt_print. The call to print will put out
that same message every time the instruction is executed. The call txt_print will print out what ever text is part
of this particular “TEST_INST” instruction in the stimulus file.

 elsif (instruction(1 to len) = "TEST_1") then

 print("More Test Message");

 txt_print_wvar(defined_vars, txt, bin);

The example above prints out a static message each time the instruction is encountered, this is done by the print
function. The TEST_1 instruction also prints out any text found for any TEST_1 instruction encountered and
substitutes any variables found with binary representation.

 elsif (instruction(1 to len) = "TEST_3") then

 txt_print(txt);

 txt_print_wvar(defined_vars, txt, hex);

VHDL Test Bench Users Guide Version: 2.0 Beta 29

GNU VHDL Test Bench May, 2011

The example above will print out the txt part of the TEST_3 instruction twice. The first time, the txt field will
be printed as is. The second time, it will be printed with variable substitution with hexadecimal representation.

9. Version 1.2 Test Bench Package

The test bench package, version 1.2, provides some enhancements and bug fixes.

The one bug that would affect Linux users pertained to the INCLUDE instruction and the use of the txt variable
method. If a comment was placed after the file name, any extra white space between the end of the file name
and the comment delimiter, was included in the file name. This cause the file not to be found because spaces
are legal in Linux file names. The INCLUDE instruction implementation was changed to strip off any white
space found in the file name.

Another problem was with the discovery of an invalid variable some time into a simulation. This could cause
hours to be wasted when the test case halts before completion. A procedure was added to scan the instruction
sequence for invalid variables before returning from the read_instruction_file call. This could save hours for
you if you make a typo.

While evaluating structure of the test bench it was seen that the DEFINE_VAR instruction was being put onto
the inst_sequ list. Hence was being searched through each time an instruction was retrieved from the instruction
list. This is wasted computing and so the DEFINE_VAR instruction no longer is put on the inst_sequ list. Also
as a result of this effort was the removal of the dependency of where variables are defined. Now variables can
be defined any where in a script using the DEFINE_VAR instruction.

It was also found that the full file name of the file, a line in the a stimulus came from, was being included in
every stim_line record. A full 200 characters was being reserved for each line in the test case. This character
string was replaced with a pointer to a record in the file_list, linked list of file names. The file names found in
the file_list are the main file name and any file names from INCLUDE instructions. This change was made to
reduce the amount of memory used by the test bench system.

9.1 Upgrading tb_bhv from 1.1 to 1.2
If you want to upgrade a version 1.1 test bench to use the version 1.2 test bench package, you will have to make
some small edits to the tb_bhv file.

Add:

 variable file_list : file_def_ptr; -- pointer to the list of file names

The definition of the variable for the list of files, file_list of type file_def_ptr. This is shown below in full from
the read_file process definition statement.

 Read_file: process

 variable current_line : text_line; -- The current input line

 variable inst_list : inst_def_ptr; -- the instruction list

 variable defined_vars : var_field_ptr; -- defined variables

 variable inst_sequ : stim_line_ptr; -- the instruction sequence

 variable file_list : file_def_ptr; -- pointer to the list of file names

Change:

Change the read_instruction call to look like the statement below. Note the addition of the file_list variable.

VHDL Test Bench Users Guide Version: 2.0 Beta 30

GNU VHDL Test Bench May, 2011

 -- Read, test, and load the stimulus file

 read_instruction_file(stimulus_file, inst_list, defined_vars, inst_sequ, file_list);

Change the access_inst_sequ call to look like the statement below. Note the addition of the file_list variable.

 access_inst_sequ(inst_sequ, defined_vars, file_list, v_line, instruction,

 par1, par2, par3, par4, par5, par6, txt, len, file_name, file_line);

10. Version 1.3 Test Bench Package

A user found and reported a typo in the Template WHILE instruction. This was corrected and checked in under
version 1.3 of the test bench template behave file.

Updating a pre-version 1.3 test bench to version 1.3 will require the user to change the test bench bhv file. A
pre-version 1.3 test bench retrieves instructions from the list of instructions by searching from the top each time.
In order to improve efficiency, two new variables have been added to the test bench template (bhv file) and the
access_inst_sequ call. The new variables store the sequence index and pointer to the last instruction accessed.
If the current instruction is after the last one, in the list, the test bench will search forward in the list from the
last instruction accessed. Otherwise it will search for the current instruction from the start of the list, like it use
to. The changes to the package files are small but the affect on instruction searching can be drastic.

11. Beta 2.0 Test Bench Package

This release will not require the user to do any changes to existing test benches based on version 1.3.

There was one bug fix, the returning of the file name the stimulus line is from. Some how this value was not
being returned in my downloaded version of the package. The value is now returned as expected.

The main addition/change to the package is the ability to create commands with and undefined number of
parameters. This is achieved by setting the “args” value in the define_instruction call to have a value greater
than six.

The package also contains the definition of record types to be used as stimulus bus ports on BFM's. This
includes functions defined to set the buses into a neutral state.

VHDL Test Bench Users Guide Version: 2.0 Beta 31

GNU VHDL Test Bench May, 2011

Appendix A: Example Tb

Example test bench:

A simple example of a test bench implementation was posted to the CVS repository. This example contains a
working behavioral model of a register driving some out put pins. The user can control the value of the output
pins by writing to the stimulus access port address corresponding to the output desired. A read pins instruction
is included to read the value of the example DUT outputs. A verify instruction is used to check the value that
was read is as expected. This demonstrates self checking test cases.

The following files are found in the CVS examples/example1/vhdl directory:

example_dut_ent.vhd

example_dut_bhv.vhd

example_dut_tb_ent.vhd

example_dut_ttb_ent.vhd

example_dut_tb_bhv.vhd

example_dut_ttb_str.vhd

The example stimulus file is found in the CVS examples/example1/stm

stimulus_file.stm

VHDL Test Bench Users Guide Version: 2.0 Beta 32

GNU VHDL Test Bench May, 2011

Appendix B: Updates

Updates:

Version 1.2 tb_pkg_header.vhd

Fix package header name to match body and intended naming.

Version 1.3 tb_pkg_header.vhd

Update c_stm_text_len constant to be 200. Enabling txt strings to be longer for file path naming in INCLUDE
instructions.

Add file_def and file_def_ptr types

Change stim_line record file_name, type stim_text, to file_idx, type integer

Version 1.2 tb_pkg_body.vhd

Add check for valid variables before starting simulation.

Change inst_sequ so that DEFINE_VAR instructions are not added to it.

Add removal of white space at the end of file names of INCLUDE instructions when the txt_ptr version is used.

Add file_list linked list of file names functionality

Remove some unused code

Version 1.2 template_tb_bhv.vhd

Comment out the INCLUDE instruction from the elsif chain

Add txt_print_wvar as the default text output function to put out text after instruction completion.

Add missing ELSEIF define_instruction call

Add file_list variable to read_file process

Update end of elsif chain comment to be more informative

Update function calls to include file_list

Version 1.2 example_dut_tb_bhv.vhd

This file was updated for version 1.2 of the test bench package

Add variable: file_list : file_def_ptr; -- pointer to the list of file names

Change the read_instruction call:

read_instruction_file(stimulus_file, inst_list, defined_vars, inst_sequ, file_list);

Change the access_inst_sequ call:

access_inst_sequ(inst_sequ, defined_vars, file_list, v_line, instruction, par1, par2, par3, par4, par5, par6, txt,
len, file_name, file_line);

Version 1.3 tb_package_body.vhd

Add parameters to the access_inst_sequ and associated code to implement new search method

Version 1.4 tb_package_header.vhd

Add to access_inst_sequ last_num and last_ptr parameters

Version 1.4 template_tb_bhv.vhd

Update parameters for access_inst_sequ calls, add and initialize variables for new search method

VHDL Test Bench Users Guide Version: 2.0 Beta 33

GNU VHDL Test Bench May, 2011

GNU Free Documentation License
 GNU Free Documentation License
 Version 1.2, November 2002

 Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

VHDL Test Bench Users Guide Version: 2.0 Beta 34

GNU VHDL Test Bench May, 2011

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by

VHDL Test Bench Users Guide Version: 2.0 Beta 35

GNU VHDL Test Bench May, 2011

proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the

VHDL Test Bench Users Guide Version: 2.0 Beta 36

GNU VHDL Test Bench May, 2011

Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.

VHDL Test Bench Users Guide Version: 2.0 Beta 37

GNU VHDL Test Bench May, 2011

B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.

VHDL Test Bench Users Guide Version: 2.0 Beta 38

GNU VHDL Test Bench May, 2011

These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

VHDL Test Bench Users Guide Version: 2.0 Beta 39

GNU VHDL Test Bench May, 2011

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

VHDL Test Bench Users Guide Version: 2.0 Beta 40

GNU VHDL Test Bench May, 2011

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU

VHDL Test Bench Users Guide Version: 2.0 Beta 41

GNU VHDL Test Bench May, 2011

 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

VHDL Test Bench Users Guide Version: 2.0 Beta 42

	1. Introduction
	1.1 History
	1.2 Overview
	1.3 Scope
	1.4 Interested Parties
	1.5 Why?
	1.6 Other sources of Information
	1.7 Document Acronyms

	2. Test Environment Usage Flow
	2.1 The DUT
	2.2 Choose The Methodology
	2.3 Generating the Test Bench
	2.4 Creating the Initial Instructions
	2.5 Writing Test Cases (stm files)
	2.6 The Regression Set

	3. The VHDL Test Bench
	3.1 Recommended directory and file structure
	3.2 Default Test Bench Structure
	3.3 Implementation Variations
	3.3.1 Internal Test Bench Variant
	3.3.2 Multi Script Implementations

	3.4 Script Parsing Conventions
	3.4.1 Case
	3.4.2 White space
	3.4.3 Comments
	3.4.4 Variables
	3.4.5 Special Variables
	3.4.6 Condition Operator Constants
	3.4.7 Number Notation:
	3.4.8 Dynamic Text Strings

	3.5 Search Order

	4. Test environment Instructions
	4.1 Default Instructions
	4.2 User Defined Instructions
	4.2.1 Commands with Variable Number of Parameters
	4.2.2 Procedures
	4.2.3 Concurrency

	5. Test Bench Working Details
	5.1 VHDL Variables
	5.2 VHDL Procedures

	6. Test Bench Generator tool
	6.1 TTB Gen Plus 2 Usage

	7. The test Bench and BFMs
	7.1 The Stimulus Access Port
	7.2 Connecting BFMs into the Test Bench

	8. Functions Provided by the test bench Package
	8.1 c2std_vec
	8.2 define_instruction
	8.3 index_variable
	8.4 update_variable
	8.5 tokenize_line
	8.6 print
	8.7 txt_print
	8.8 txt_print_wvar

	9. Version 1.2 test bench package
	9.1 Upgrading tb_bhv from 1.1 to 1.2

	10. Version 1.3 Test bench Package
	11. Beta 2.0 Test bench package

